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FOREWORD 

Minimum Variance Precision Tracking 

and Orbit Prediction Program 

This report  was prepared by Analytical Mechanics Associates, Inc. in partial 
fulfillment of contract "35-2535. for the Special Projects Branch, Theoretical 
Division, G. S. Fa C. 

e 

NASA. 

The report contains an extension and modification of the Kalman Minimum Vari- 
ance filter for  application to an orbit determination program. 

The analysis was carried out by Samuel Pines and - Henrv _-- Wolf - of AMA with active 

assistance from R. K. Squires and D. Woolston oi NASA, and Mrs. A. Bailie of 
AMA. The report also contains a description of the minimum variance digital 
program written by John Mohan of AMA based on the analysis contained herein. 
Portions of this program, relating to the computation of the nominal trajectory 
and the integration scheme, were  taken from a FORTRAN program written by 
Miss  E. Fisher of NASA. 
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1. INTRODUCTION 

The major requirements in  generating a precision orbit prediction and tracking 
program ar i se  from the following sources: 

1. 

2. 

3. 

4. 

The need for obtaining a precise nominal trajectory which is capable 
of predicting the orbit position and velocity over long periods without 
loss of information due to round off. 

A theoretically sound statistical process for obtaining information 
from observations rapidly without requiring large stretches of 
observations over long time arcs  which unduly tax the linear assump- 
tion of the least square techniques. 

The choice of variational parameters to be used for differential orbit 
corrections is of utmost importance in preventing the loss of information 
contained in observational data distributed over long time arcs. 

The need for generating closed form analytical partial derivatives of 
the variations in the observations with respect to changes in the orbit 
parameters.  

a) Orbit Prediction 

The equations of motion of a vehicle in a gravitational field under the action of 
perturbative accelerations a r e  highly nonlinear. Techniques for the solutions 
of these equations have occupied physicists and astronomers for centuries. 
Exact, closed form solutions are practically nonexistent. Even such an elemen- 
ta ry  problem as the restricted three-body problem has successfully eluded the 

capabilities of the best mathematicians. 
which have been developed fall into two classes. 

To date, the approximate methods 

The f i r s t  class,  called special perturbation theories, is concerned with the nu- 
merical  integration of the equations of motion. These methods are called special 
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because solutions so obtained are applicable only to the specific set of initial 
conditions used. Although these solutions are substantially correct, they suffer 

from the defect that the solution at time, t, cannot be obtained without pr ior  
integration through each value of time preceding the given time. These solutions 
require long computations and are subject to numerical round-off e r r o r  due to 
integration. 

Tho connnd nlo e m  n n l l d  mnnnnal  mnmk.A.m+:n- -n+hnAm ncm-nnnfin +hn orrl..+:rr- 
-A*- W Y V Y I I U  V-UYU, YULYU ~V.&V&.U r u L  CUL W U C I V A ~  invrrrvuu, vrrr&vuovu UAU O V I U C I V A I  

in approximate closed form by means of series, employing known algebraic and 
transcendental functions of time. 
that the solution is valid for any set of initial conditions and may be obtained by 
evaluating the solution for the given time. The difficulties encountered in these 
methods lie in the slow convergence and in the complexity of deriving the co- 
efficients of the series. 

The te rm general is derived from the fact 

The comparative advantages of the various special perturbation theories, such 
as Cowell's method, Encke's method, and the variation of parameters, have 
been extensively explored. The difficulties associated with the special 
perturbation method are well understood. 
general perturbation method is less satisfactory, and requires intensive 
investigation. 

The situation with regard to the 

A brief discussion of the major sources of e r r o r  in both general and special 
perturbation methods will be undertaken. 

The major source of e r r o r  in the general perturbation methods is the 
exclusion of small, though important, perturbative forces from the analysis. 
The great difficulty in expressing the disturbing function in te rms  of canonical 
variables and integrating the resulting equations often compels the exclusion 
of such effects. Another more fundamental e r r o r  lies in the unavoidable growth 
of numerical accuracy due to the increasing magnitude of the independent 
variable, time. 

It is a mistake to infer that simply because a solution is theoretically 
expressible in closed analytic form as  a function of time, that it follows that 
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the numerical evaluation of this expression results in an accurate solution. 
To illustrate this fallacy, consider the function, sin t. 

Since the function, sin t, can never be evaluated more accurately than i t s  

argument, t, the e r r o r  in the computation of the function grows in direct 
proportion to the error contained in computing t. Since the computation takes 
i;!aze ir; 2 e;.&+& di-l;: arith;;;.Y~ on 2 m;z+i;ine, +he L11G < - - - - a m -  A l l C I A G U U C I  :- 111 +h- W I G  mnrr.r:+..An A A l - b A L L * U - b  V L  n C  

the independent variable is dropped as it grows beyond the capacity of the 
storage. This drop-off of the least significant portion of the function, t, is 

irretrievably lost to the digital program. Thus, if we have a finite digit 
arithmetic containing p digits, and compute in a number system, modulo s, 

the lower bound of the e r r o r  in sin t is given by 

One of the most significant conclusions to be drawn from the above e r r o r  
estimate is the realization that it may be possible to obtain the same level of 
accuracy with a special perturbation numerical integration technique. In this 

manner it may be possible, on a finite digit arithmetic computing machine, 
(which after all is the only real method of computing in this world) to realize 
no numerical difference between the most accurate general perturbation closed 
form solution and a corresponding, well conceived, special perturbation method. 
In the sense of the e r r o r  estimates given above, one may state that it is 
possible to eliminate round-off using numerical integration. What is really 
meant is that since the so-called exact solution has a built-in unavoidable e r ror ,  
the round-off e r r o r  due to numerical integration can be so controlled as to 
produce an e r r o r  no greater than the "exact" solution. 

A study of the various special perturbation methods in use today for precision 
orbit prediction for the effect of round-off and machine time solution rates has 
been carried out in Reference 1. The general conclusions drawn in this study 
may be summarized as follows: 
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1. Cowell's method, W h i l e  simple to program, consumes larger machine 
computed times and is subject to an unavoidable accumulation of the 
round-off e r r o r  leading to the loss  of orbit prediction accuracy. 

2. The elimination of both truncation and round-off e r r o r  can be accom- 
plished through either the variation of parameters o r  the Encke method. 

3. The pi'&reiice 01 ihe Encke meinoci over the variation of parameters 
arises from the simplicity of the equations and a great reduction in 
computing time. It is possible to generate a precision program using 
the Encke method which will produce a solution of the equations of 

motion as precisely as required in shorter computing time than any 
other available method. 

As is well known, the Encke method solves the best local two-body problem and 
integrates the deviation from this nominal trajectory. Since the round-off error 

occurs only in the integrated position, it is possible to eliminate this defect from 
the answer by periodic orbit rectification. Additional difficulties of the conven- 
tional Encke method, such as numerical inaccuracies for circular orbits, e tc . ,  
may be eliminated by using a solution of the Kepler problem in terms of the 
initial position and velocity vectors. 

b) The Statistical Filter 

Since the orbit  position and velocity a re  not directly observable, it is necessary 
to infer these variables from a sequence of observations which are functions of 
the trajectory. In the conventional methods, a l inear relationship is assumed be- 
tween the deviations in the observations and the corresponding deviations in the 
orbit  variables. 
predictable e r r o r  in the observation. A large number of observations are made, 
overdetermining the linear system of equations. A least square technique is 

used to obtain the best value of the orbit e r r o r s  to fit the known observation 
errors. Since the equations of motion are  essentially nonlinear, this region of 
linearity becomes more and more constrictive about the nominal trajectory the 
longer the time period over which the prediction is made. 

Thus, an e r r o r  in the orbit position will correspond to some 

Thus, the least square 
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technique often produces a result, fitting data over a long t ime a rc ,  which is out- 
side the linear range. 
machine time. Reducing the number of observations to a shorter t ime a rc  helps 

avoid this difficulty. The weighted least squares is often used in this manner. 
However, a large number of observations is always needed in order to properly 
evaluate the effect of the random instrument errors.  

This produces problems in convergence and consumes 

The Schmidt-Kalman (Reterences 2, 3 j minimum i-2rr-iaiize t e e k i q ~ e  ~~c i .1 -e  the 
difficulties mentioned above. This procedure permits a complete optimum 
estimate of the orbit variables and the observation e r r o r s  from each single 
observation. It has been shown that the two methods converge to the same 
answer eventually for the same total set of data (Reference 4). Moreover, the 

variance technique always converges more rapidly since it requires less data 
at each stage than the least square procedure. At best, the least square technique 
can be said to be as good as the minimum variance. 

It is instructive to contrast the iterative solution process of the three shoothing 
techniques described above. 

Given the linear relation between observations and the required orbit information, 

the following solutions obtain: 

a) least squares 

A x (to) = (A* A ) - l  A* A y  (t) 

A x  (to) = (A* W-' A + P - l )  

(1.3) 

6) weighted least squares 

-1 
A* W - l  A y  (t) (1.4) 
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c)  Kalman filter 

A x ( t )  = P M * ( M  P M *  + W ) - l A y ( t )  (1.5) 

The essential difference between the method of minimum variance, least squares 
and weighted least squares is contained in a comparison of Eqs. (1 .3) ,  (1 .4)  

and (1.5). 

The method of least squares and weighted least squares both relate the estimate 
of the initial parameters to an entire sequence of observational residuals spread 
over an extended time arc. In contrast, the method of minimum variance re- 

lates the present estimate of the state variable deviation to the present actual 

deviations in the observations. The linear assumptions required for  the up- 

dating theory are violated to a much less degree in the method of minimum vari- 

ance than in  the method of weighted least squares. 

c) Choice of Parameters 

The choice of the elements used in the differential correction scheme is of ut- 
most importance in predicting observations and other orbit functions over a 
long time period. It may be shown (Reference 5) that the best choice for param- 
eters is that in which only one variable affects the energy o r  the mean motion 
of the orbit. The conventional astronomical elements have this property. 
However, three of these variables, the argument of perigee, the time of peri- 
gee passage, and the ascending node become poorly defined for near circular 
and iow inclination orbits. ‘lhe initial position and velocity components do not 
have this difficulty. However, all six of these affect the energy. An alternate 

set of elements in common use in tracking schemes (Reference 6 )  utilizes the 
scalar orbit distance ( r )  and velocity ( v )  in addition to four angles to de- 

scribe the motion. 

- 

For this set, two of the six variables affect the energy. 

A convenient set  of orbit parameters have been derived in Reference 7. These 

avoid the difficulties for circular and low inclination orbits as well as re- 
stricting the energy parameters to a single element. The parameters are 

given as follows: 
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1. A rigid rotation about the initial velocity vector. 

2. A rigid rotation about the initial position vector. 

3. A rigid rotation about the initial angular momentum vector. 

R - R  

. Irr l a  I 
4. A change in the variable, - . 

'V  r I -- I 

1 - 
a '  5. A change in the reciprocal of the semi-major axis, 

r 6. A change in the variable, 1 - - a *  

These six elements have the characteristic that they determine the orbit inde- 
pendently of its orientation o r  shape and do not break down. Moreover, the 
matrix of partial derivatives of these elements contains only one secular term, 
namely that due to the semi-major axis, a. 

d) Closed Form Anal-ytical Derivatives 

The requirement for utilizing closed form analytical derivatives is associated 
with the need for rapid computing times. If the program were required to 
integrate the variations in the observations due to changes in the orbit parameters 
directly from the differential equations for these variations, the computing time 
ever GG ix?xxre thzt r e q c i r d  fcnr the nnminal trajectory would increase bv a 

factor of six (6). Since these variations are only required in order to obtain 
small  iterative changes to the orbit parameters, approximate expressions will 
be useable, provided the residual in the observations can be accurately computed. 
This situation is analogous to the possible use of an approximate derivative in 
Newton's method for  obtaining the roots of a polynomial. The program presented 

in this report derives a set of analytical derivatives based on the two-body prob- 
lem approximation of the osculating orbit given in t e rms  of the parameters out- 
lined earlier. In a manner similar to the Encke method, a readjustment is 

made in the partial derivatives whenever the orbit is rectified. 

7 



2. PRECISION NOMINAL TRAJECTORY 

a) The Equations of Motion 

The equations of motion of a vehicle with negligible mass  under the ac.-an o ' ;L 

dominant central force field and perturbed by other smaller forces is given by: 

.. 
R = - J!!- R + F1 + Fz + F 3 .  3 r 

These equations may be written in the Encke form by replacing the vector R 
by the sum of a local two-body orbit position vector, Rc, plus a perturbation 
displacement, 

R = Rc + P . 

The vector Rc satisfies the differential equation, 

The Encke equation of motion for the perturbation displacement, P, is given by: 

These are the equations that will be integrated to obtain a precision nominal 
trajectory. 

The perturbations that are included in th is  program are those due to the gravita- 
tional attraction of the sun, moon, Venus, Mars, and Jupiter ( F1); the program 

also includes the perturbations due to the earth's oblateness (F2) and the per- 

turbations due to atmospheric drag ( F3). 

(2.4) 
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The equations for the gravitational perturbation acceleration due to the sun ,  

moon and planets are given by: 

(2 .5 )  

-- 
'lhe perturbation accelerations due to the earth's oblateness a r e  given by: 

where 

(2 .6)  

(2.7) 

2 20 J4 2 
+ - ( - + + -  J3 15 2 r 2 )  + - 7 ( - 3 + 7 % ) ] .  

r r 5 r r z  

The perturbations due to atmospheric drag are given by: 

The vector R - hz X R is the velocity of the vehicle relative to the atmosphere 
rotating rigidly with the earth. 
contains only a component in the z direction. Its magnitude is given by the 
earth's siderial rotation rate. 

The vector S2 is the earth rotation vector and 

b) Two-Bodv Problem 

The vector position and velocity for a Kepler orbit may be written in terms of 
the initial position and velocity vectors a s  given in Reference 8. 
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Rc = f Rr f g Rr 

Rc = f t r  R + g t R r .  
(2. 0) 

The functions f and g can be expressed for both elliptic and hyperbolic orbits 
by: 

fi + 1 
la1 

f = - -  
r r 

1 
g = - - n f l  f ( t -  tr) 

r r d r f2 + - 
la1 la1 

C - =  

(2.10) 

f2 + 1 
la1 g = - -  

r r dr n ( t  - tr) = fl + - f3 + 
tal J u  la1 

f2 * 
- 

The functions fl, f2, f3, f4 are defined in terms of the incremental eccentric 

anomaly 8 = E - Er 

f , ( e )  = 8 - sin 8 

. ,  
y e )  = 1 - c o s 8  

(elliptic) 
f 3 ( 0 )  = s i n 8  = 8 - f l ( 8 )  

( 2 . 1  I )  
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For the hyperbolic case 

fp) = s i n h e  - e 

f 2 ( e )  = c o s h 8  - 1 

f ( 8 )  = sinhe = 8 + f l ( e )  3 

y e )  = c o s h e  = 1 + y e )  

(2. 1 3 3 )  

where 

r dr = Rr R 

2 -1 
V 

a = (+ P 
r 

c) Integration and Rectification Control 

The Encke method reduces somewhat the relative advantages of one integration 

scheme over another insofar as numerical accuracy is concerned. The method 
is capable of using almost any integration scheme to obtain a precise solution. 
The major advantage to be gained in the choice of integration schemes lies in 

the choice of the maximum integration interval to minimize the total computing 
time required. The Encke method computes the solution of the equations of 
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motion as a sum of the exact function plus the integrated effect of the perturba- 
tions. Thus the solution may be kept as precise as the exact portion so long a s  
the accumulated e r r o r  in the integrated portion i s  kept from affecting the least 
significant digit of the exact term. 
e r r o r  and the accumulated truncation error, in the integrated portion of the 
solution, and by rectifying the solution to a new osculating Kepler orbit, when 

'' ' ' ---A- +L--a+nn= tn affcwt the  least significant digit of the ever me i n ~ e g ~ a r t u  G L L u A  bAIauuly.II -- -_____ 
exact solution, the total solution may be kept as precise as the exact term can 
be computed. 

By estimating the accumulated round-off 

- 

The particular program outlined in this report uses a fourth order Runge-Kutta 
integration scheme to initialize a sixth order backward difference second sum 
Cowell integration formula. A constant step size is used in place of a variabk. 
integration interval. At pre-set points in the trajectory the optimum interval 
size is altered, based on previous numerical experience with these intervals. 

The rectification feature outlined above, based on round-off e r r o r  control, is 
presently not in the program. At present, rectification is triggered whenever 
the integrated portion of the solution is a fixed ratio of the exact two-body term. 
In effect, this controls the accumulation of round-off error .  

The rectification control for  switching reference bodies is triggered as a 
function of the relative scalar distances to the various attracting bodies. The 
radius of the sphere of influence of each body is pre-set in the program. When- 

ever  the vehicle enters the sphere of influence of a body, the progfam iectifies 
the orbit, and recomputes the planetary coordinates so that the distances and 
velocities of the various bodies a re  measured from the new dominant reference 
body. 

12 



3. THE STATISTICAL FILTER 

a) Definitions 

The deviation of the state vector from its expected mean value is given by: 

hl - 
x = x - x .  

The average of this deviation over all estimates of the state for a given time, t,  
is taken to be zero. 

- E(;) = 0 , E ( x )  = E(%) = x . 

The covariance matrix of the expected deviation is given by 

It is assumed that a limit eldsts for large n and that the matrix is bounded. 
This limit is the covariance matrix of the expected e r r o r s  in the state variables 
at time t. 

In addition; there exMn a b - o m  determi-i-stic fi~mt;,m nf the s+sk which is 
assumed to be observable, and which is subject to random disturbances due to 
statistical noise. The deviation of the observation from its mean value at a 
given t ime is given by 

The average deviation over all observations a t  this given time is assumed to be 
zero. 

E(?) = 0 , E(?) = E ( + )  = f ( x )  . 

(3.1) 

(3.5) 
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The covariance matrix of the square of the deviations is given by 

n 

1 

The errnr in the observations due to the noise is taken to be uncorrelated with 
the e r r o r  in the state. 

E(;, E * )  = E(<, ;*) = 0 . 

(3. G )  

(3.7) 

A linear relation between an actual observation and its nominal deterministic 
value is given by 

A y = M A x + c  . 
Y 

The covariance matrix of the expected e r r o r  in the observations due to both the 
observational noise and e r r o r s  in the state, is given by 

As the e r r o r  in the state becomes negiigibie, the covar iac t :  iiiiiidii, P, 
tend to zero and 

b) The Minimum Variance Filter 

Given the linear relation between the observation e r r o r s  and the e r r o r s  in the 
state, i t  is required to find the optimal linear unbiased estimate of the correc- 

(3.9) 

(3.10) 

tion in the state as a function of the e r ro r s  in the observation. 
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The cr i ter ia  used shall be such that over all possible operators, K, find that 
operator which makes the covariance matrix of the e r r o r s  in Eq. (3.11) a 
minimum. Let, 

4 

(3 .11 )  

The covariance matrix of the e r ro r ,  cx, is 

E(cx ,  c X )  * = P - K E ( A y ,  AX*) - E ( A x ,  Ay*)K* 

(3.13) 

The minimum is obtained by the condition 

The optimum filter is given by 

K = P M * Y - '  

c) Propagation of the E r r o r  

The propagation of the e r r o r s  in the orbit may be obtained from the equations 

of motion. Let, 

k = f(x, t )  a 

A solution may be obtained fo r  a given set of initial parameters required to 
integrate the equations of motion 

I (3. 14) 

(3.15) 

(3. 16) 

x ( t )  = x ( a ,  t )  . (3. 17) 
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The variation from this nominal solution due to changes in the given parameters 
is 

(3. 18) 
= @ ( t )  Aar ( to )  . 

The matrix iP ( t  ) is called the state transition matrix and propagates the 
terministic deviation in the state as a function of the known deviation in the 
initial parameters. The covariance matrix of the orbit errors at a later time, 

t, can be obtained from the knowledge of the e r r o r s  in the parameters, ai. 
Thus 

E(Ax ,  Ax*) = P ( t )  = CP E(Acr, A a * ) @ *  . 

Similarly given any function of the state, y ( x )  such as an observation, the 
propagation of errors in this observation may be estimated from a knowledge 
of the errors in the state and the instrument e r r o r s  in the observation. 

E ( A y ,  Ay*) = M P M *  + r2. 

Following each observation the change in the covariance matrix of the state may 
be computed through equation (3.13) after substituting the optimal value of the 
4%lt.-%* K. 
A L A S &  

P(t+) = P( t - )  - P(t-) M* Y-'. 

(3.19) 

(3.20) I 

(3.21) 
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4. CHOICE OF THE VAFUATIONAL PARAMETERS 

a) The Secular Effect 

Numerical experience with the state transition and covariance matrices in 
.. linear prdiciiori Wuiuiiqiies has &is..+= that $"le s+ztc t r ~ ~ ~ i t i ~ f i  matri_x n11- 

merically poorly conditioned for the computation of its determinant and its 
inverse over long time arcs. In the usual theory the initial conditions are 
used as the parameters. It is possible to define an alternate set  of state 

parameters  related to the conventional state variables by a non-vanishing 
transformation S( t). The deviations of the state variables are related to 
the deviations of the variational parameters by 

A x  = S ( t ) A a r ( t )  

The state transition matrix of the state variables is related to the state 
transition matrix of the variational parameters by 

@ ( t ,  to) = S( t )Ca( t ,  to) S-l(to) . 

The determinant of the transition matrix is given by 

Since the transformation between the state variables and the parameters is a 
point transformation, no functional dependence on time is contained in the deter- 

minant of the matrix s( t). If the determinant of the state transition matrix 

is some polynomial in  time, the corresponding determinant for  the variational 
parameters  has  the same functional form in time, differing at most by a con- 
stant. The determinant of the state transition matrix is an invariant function 
of time. The difficulty in computing the determinant arises from the condition 
that the elements of the state transition matrix for  one set of parameters may 
contain more secular te rms  than necessary. Consequently, the computation 

(4. 1) 

(4.2) 
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of the determinant relies heavily on the cancellation of numbers of large and 

equal magnitude. 
'* 

From the Hamilton-Jacobi theory, it is well known that the energy and the time 

are conjugate variables. It may be shown that the partial derivatives of the 
state variables with respect to any variable affecting the energy will produce 
secular terms. Thus, 

where a, b are bounded functions. The secular term coefficient, b, will be 

zero only if 

= 0 ,  b (energy) 
(to) 

Thus it is desirable to obtain a set of variational elements in which a minimum 
number of variables affect the energy. The optimum set is one in which the 
energy is one of the variables and the others are independent of it. Such a set 
will contain the minimum number of elements with secular te rms  and will  re- 

duce the numerical difficulties with the state transition matrix. 

b) The Variational Parameters 

is possible to obtain three rigid rotations about the vectors R, R and H which 
do not relate to any fixed coordinate system. 

To rigidly rotate a vector L about a given vector R through an angle C Y ,  

the resulting transformation is given by 

(1   COS^) R + cosu L + 7 sins R X L  . R *  L L'= 
r 

(4.6) 
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In the limit, for small rotations, we obtain three infinitesimal rotation 
param e ters 

H. R' V = lim - 
R'd R h2 

, . 
c w 3  = -1im - (HXR). k' 2 

$4 R v h  

The remaining three parameters a re  

1 
015 - a 

- -  

r - oL6 - 1-- a 

These s ix  parameters will be used to carry out the differential correction 
process. 

c )  The Transition Matrix 

\-:. 7 )  I 

The six (6) parameters are known functions of the state given by Eqs. (4.7) 

and (4. 8). The partial derivatives of these variables may be obtained as 
follows: 
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A n .  
The inverse transformation, (=), may now be o'utiiiiied. ax 
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0 

r - H  
h2 

ar4"6R 

H X R  

h vy 
r) 

2 a  
2 a n v  r v  

- -  - H X R  

2 r  - R  
P 

1 By choosing a as a parameter, the other five parameters will automatically 

be independent of the energy providing the inverse of the matrix (-) exists. 

This is guaranteed by defining the transformation matrix S( t )  such that 

aa 
a x  

(s-l) s = I 

The point transformation matrix S ( t )  is given by 

(4.10) 

(4.11) 
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H - -  
V i 'I 0 

0 

H 
r 
- H X R  

h 

2 
a H X R  
h2 
- 

0 

- aR 

"k 
2 
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5 .  EVALUATION OF THE PARTIAL DEIUVATIVES AND COVAIUANCE .- 

MATRJCES 

a) The Transition Matrix 

The computation of the partial derivatives of the observations with respect 10 

the variational parameters are required. 
additional trajectories and forming the differences using the secant method. 
However, the program recommended in this report obtains the matrices of 
partial derivatives analytically in terms of the local Encke two-body orbital 
coordinates. Thus, the complete orbit prediction and partial derivative n'ii 

trices may be obtained in essentially the same computing time a s  that of t :  

nominal trajectory. 

These may be obtained by integrating 

The method of obtaining the state transition matrix is based on a generalization 
of an Encke method applied to linear prediction theory. It is assumed that the 
equations of motion may be decomposed into two factors 

k = g(x ,  t )  + h ( x ,  t )  

where 

g > >  h . 

It is further assumed that a closed form solution of the differential equations is 

known for the case where h = 0 ,  

Furthermore, the state transition matrix for the approximating solution is 
known in closed form 
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Let the deviation between the state variable and i t s  approximation be given by 

The perturbation equations of motion may now be written in the generalized 
Encke form 

I p = g ( x ,  t )  - g(s ,  t )  + h ( x ,  t j  . is. 6) 

In order  to guarantee that the deviation, p, is never permitted to grow too 
large, the process of rectification is introduced. Whenever a pre-determined 
value of p is exceeded, the integration is terminated at time tr. A new set 
of initial conditions are introduced, setting p ( t  ) equal to zero. Integrati ": 
proceeds again about this new nominal approximate solution. 

r 

Since the deviation between x and s is never permitted to exceed the given 
value, the partial derivatives of the state variables from their nominal value 
may also be limited. Thus it is possible to write an approximate state transition 
matrix 

Moreover, the approximate state transition matrix is known in closed form. 
Following each rectification, it is necessary to relate the state transition 
matrix a t  time t to the initial time. This may be accomplished by multiplying 
the approximate state transition matrix for times within each rectification 
interval by its value at the last rectification. 

To obtain the transition matrix of the variational parameters, we note that 

(5. 7) 

(5. ti) 
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In matrix form, this becomes 

@ (t, to) = s-l (t) \I/ (t, to) S(to) . 

i n  this manner, a - =-- LULLIJ VI -E  cL- u I G  +--=-itinn bA-.w.wAv-. matrix ---I_---- may obtain& which does 
not violate the condition of energy dependence. The matrix @ (t, to) of the 

variational parameters is now given in  closed form and only one element affects 
the energy. 

b) The Parameter Transition Matrix 

The parameter transition matrix, \t (t, t,) is given below: 

V V f -  - g- 
'1: rr 

r 
r 

0 0 

0 0 

0 0 

0 0 

0 0 

&34 

gt 

0 1 

n 

3 a"n a5 (t  - tr)  - - -  a n  
- --g r 2 r  

0 

0 

(5.9) 

'36 i 

(5. iOj r 
a n  t 

- -  r f  

0 

r r - f  r 
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‘36 
h 
2 

- -  
V 

a - ft rr 

u E 1 2 

2 

r r ’- -L - -  
2 r v  r r r  

(5.11) 

To obtain the parameter transition matrix over a time interval greater than 

one rectification interval, the following equation applies: 

In this manner, a closed form expression for the state transition matrix may 
be obtained without integrating large quantities of differential equations. More- 
over, the error in the computation may be limited by the proper use of the 
rectification technique. 

As has been stated, the use of the conventionai state variables, fizrneljr b.?itig 

position and velocity, leads to a transition matrix which is poorly conditioned 
and which contains rapidly varying functions of time for its elements. In the 
procedure recommended here, the six variational parameters described above 
have only one secular term, namely that due to cy5. In addition they have the 

characteristic that they completely determine the orbit independently of the 
orbit orientation or shape. 
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c) The Modified Kalman Filter 

A modification of the Kalman equations in terms of these new parameters has  

been derived and is available for incorporation in the orbit determination and 

prediction program. 

The deviations of the orbit variables in terms of the new parameters are given 

by 

The parameter transition matrix is given by 

The observation e r r o r s  in t e rms  of the new parameters are given by 

where 

N ( t )  = M ( t )  S ( t )  . 
The corresponding covariance matrices a re  given by 

E ( A a ,  Aa*)  = Q ( t )  = Q ( 0 )  n* 

P( t )  = S Q ( t )  S* 

Y ( t )  = N Q ( t )  N* + F2 . 

(5.13) 
~ 

(5.14) I 

(5.15) 

(5. 16) 
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The inverse relationship between the orbit parameter corrections and the 
observational e r ro r s  is given by 

A a ( t )  = L ( t ) A y ( t )  . 

The optimum filter L ( t )  is given by 

L ( t )  = Q N*Y" . 

The corrected covariance matrix after each observation is given by 

act', = Q ( t - )  - Q ( t - ) N * Y - l  N Q ( t - )  . 

Using these modified equations, it is now possible to use the Kalman scheme 
for both short and long te rm predictions. Moreover, the computing t ime need 
not exceed that necessary for a single nominal trajectory. 

(5.17) 

(5. 18) 

(5.19) 
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6. OBSERVATIONS 

a) Types of Observations 

One of the advantages of the Kalman scheme is the ability to determine the opti- 

mum observation to be made at each orbit position in order  to have the greatest 
decrease in uncertainty. 
c rease  in uncertainty for each observation pr ior  to have made it. In this man- 

ner, a choice may be made to obtain more rapid convergence to the proper 
solution. It is possible to use range and/or range rate at each position of the 

orbit in order  to obtain the maximum information to be gained by using each o r  
both. In addition, observations made from the vehicle during mid-course, from 

accelerometers, optical measurements, etc. may be used in an interspersed 

manner to optimum advantage. 

The method permits a predicted esihiita cf the de- 

The Kalman technique, by processing the data within the linear range of the 
prediction theory, and through the use of the recommended orbit correction 
parameters,  makes it possible to process observations over large portions of 
the tracking complex. 

The program will accept the following types of observational data, singly o r  in 
comb h a  ti on: 

i. Pkiige 
2. Range rate 
3. mght ascension and declination 
4. Azimuth and elevation and Minitrack observations 

b) 'Partial Derivatives of the Observations 

In order  to generate the differential corrections, it is necessary to compute 
residuals which consist of the difference between computed values of the observ- 
ables  and the observation data. In addition, it is necessary to compute partial 
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derivatives of the observables with respect to the orbit parameters. 
range, range rate, right ascension and declination can be expressed directly 
in terms of the geocentric state variables and the required partial derivatives 
may be obtained as follows: 

The 

Range: The computed value of the range is given by 

and the matrix of partial derivatives for the range is given by 

Range Rate: The computed range rate is given by 

The matrix of partial derivatives of the range rate with respect to the state 
variables is given by 

x - x  y - w e x s  Y - Y, 
8 - 6 7 ,  

k + U e Y s  

U 
M ( t )  = [ a - 6 7 ,  a 

0 

(6.4) 

Right Ascension and Declination: The expressions for the right ascension and 
the declination may be written as 

2 - 2  

a 
S sin D = - 

Y - Y, 
t a n R A = -  x - x  

8 
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The matrix of partial derivatives for D is given by 

Y - Ye 

sec' RA ( x -  x ~ )  
2 '  x - x  3 0, 0, 0, 0 3  [- S 

M ( t )  = (6. sa) 

Azimuth and elevation and the Minitrack observations are most conveniently 
expressed in a topocentric, local horizon coordinate system and, to treat them, 
it is useful to introduce the following relation between the topocentric and geo- 
centric coordinates: 

I , 
8 

Y - Y, (6.7) 

8 
sin cp 

ainq e' sin Q sin 0' 

- sine1 cos et 
1 t 

cos cp cos e cos cp sin 8 

XIIt 

Y"' = 

z"v 

This relation is used in developing the required partial derivatives for these 
angular observations. 

Azimuth and Elevations: The expressions for azimuth and elevation are 

and 
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The corresponding matrices of partial derivatives are 

For A 

(6. !)) 

and for E 

z l f '  z"l 

sin e' coscp - T ( y  - ys), s i n 9  - 7 ( z  - zs), 0, 0, 01 
U 0 

Minitrack Observations: The Minitrack system direction cosines are ex- 
pressed in te rms  of the topocentric coordinates as 

YE 
U m =  (6. 10) 

The corresponding matrices of partial derivatives are 

for  
X"VY - Ys) 

2 xS) , - sin cp sin e' + 
x"'( x - 

Y 

(3 

M ( t )  = $ [- sincpcosB1+ 2 
0 

(6.11) 

x"'( 2 - zs) 
c o s q  4- Y 0, 0, 0 1  

0 
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for m 

y"'( x - xs) Y'"( Y - Ys) 
9 2 , C O S #  - 1 

2 M ( t )  = ; [- s ine '  - 
U 0 

( G .  l l a )  

and for n 

z"' ( x  - xs) 

U 2 
, coscp sin 8 M ( t )  = 5 [coscpcos81 - 

Z"'(Y - Ys) - 
2 , 

U 
(6. l lb )  

z"'( z - 
sincp - 2 zs),  0, 0, 0 1  

0 

c )  Onboard Observations 

The present program does not include onboard observations. It is recommended 
that in the extension for development of this program, this capability be added 
to the program. I 
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7. PROGRAM INFORMATION 

a) Program Operation 

The program has two independent operational modes. The first mode concerns 
the generation of a reference orbii. The s e e s d  mnde involves the prediction 
of the orbit based upon observational data. Both modes require the planetary 
tables tape be placed on A-5. 

Reference Orbit Mode 

The purpose of this mode is to supply the state vectors and observation data 
that may be used in the prediction mode. The observations are output in the 
appropriate format a s  binary information on tape B76. An option is available 
to generate an ephemeris of the reference orbit on tape B-8. 

Prediction Mode 

The observations for the prediction mode may be supplied either on cards o r  
on logical tape # 16. An option is available to apply randomly distributed 
Gaussian noise to the data. When the data is exhausted the program will 

enter the reference orbit mode and continue in this mode until the final time 
is reached. When this occurs, separate options are available to obtain a sum- 
mary of the residuals in the observations and the s&& vafiab!ee. For the 
residuals in the observations, a scratch tape is needed on B-7. In order to 

obtain residuals in the state variables, the reference ephemeris is placed on 
B-9 and a scratch tape on B-8. 

b) Input 

The data is entered in eleven sections. Each section is preceded by a heading 
card with the section number entered in cols. 1-5 as an integer. Each piece 

of input will be defined as one of the four categories, integer, fixed point, 
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floating point o r  alphanumeric, by the notation, I, FX, FL o r  A The 
quantity in the description column is entered on the specified card of the 
section in the appropriate columns. The name given is the name used for 
the quantity internally in the program. 

Sect. Card Cols. --- 
1 1 2-72 

2 1 1-12 
13 -24 

25-36 

37-48 

3 

49-60 
61-72 

2 1-6 
7-12 
13-18 
19-24 
25-30 

3 1-12 

19-24 

Name 

ITITLE 
TIN 
TMAX 
DTNE 

DTFE 

PRNTNE 
PRNTFE 
NYEARP 
DAYS 
HR 
HMIN 
SEC 

HMU 

BMU 

- 3!E 

A 
FL 
FL 

FL 

FL 

FL 
FL 
I 
Fx 
FX 
FX 
FX 
FL 

FX 

1 1-5 MREF I 

6-10 KLM I 

Description 

Title 
Initial time, hr. 
Final time, hr. 
Integrating interval for  near- 
earth portion of trajectory, hr. 
Integrating interval for far- 
earth portion of trajectory, hr. 

Print interval for near-earth, hr. 
Print interval for far-earth, hr. 
Year of trajectory 
Day of year 
Hr. of day 
Min. of hr. 
Sec. of min. 
Value of earth's gravitational 
constant, E. R 3/hr. 

6 values - represent planets - 
if planet is not used, insert 0 
for that planet, if used insert 1 
1, Earth 

2. Sun 
3. Moon 
4. Venus 
5. Mars 
6. Jupiter 
Reference body (1-6) 
Indicator for dimension of input - 
R and R vectors may be input 
in 2 types of dimensions: 
1. Earth radii, ER/hr. KLM = 0 

2. km, km/sec. K L M =  1 
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Card Cols. -- 

11-15 
16-20 

n- n c  
L I - L G  

26-30 

31-35 

3 6-40 

41-45 

Wame 

NUMSTA 
KDATA 

ICPZTI? 

IFLAG 

IOBS 

LTBCD 

LTBIN 

46-50 KOND 

51-65 INTPD 

56-60 NTEB 

XuE 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

36 

No. of stations input 

Number of time points a t  which 
you have observation data; i f  
the observation data is input on 
cards, it is not necessary to 
have the exact count. 
Set to non-zero to generate a 
time history of the trajectory 
on L. T. P18. 
Print control - set to non-zero 
for complete Kalman calculation. 
Indicator to compute observations. 
0 = No observation 
1 = Observation 
2 = Observation and summaxy 

BCD tape number for observation 
data. 
Binary tape number for observation 
data. 
I.. Computing observation of 

reference orbit = 16 
2. Use  Kalman scheme 

dataon tape = 16 
dataon cards-  0 

(uses tape 117) 

Print indicator: set to 1 for 
additional print. If just summary 
is desired, use 0. 

Indicator for K&ijZii scheme. 

INTPD = 2, process data all 
together a t  a time 
point. 

of data separately 
and pick best at 
each time point. 

INTPD = 1, process each piece 

Number of 7' matrices (see 
Section 10) 



- sect. 

4 

5 

6 

-- Card Cols. Name am 
1 1-12 CONJR FL 

13-24 CONAR n 

25-36 CONKR FL 

37-48 CDRAG FL 
49-60 DCDRAG FL 
61-72 AMASS FL 

1 1-12 VNAME A 
13-24 RMIN FL 
25-36 TADD FL 

37-48 CLUE FL 
49-58 ITYPE I 

1 1-12 PSI60 FL 

13 -24 PDOT FL 

25-36 PSIDOT FL 

37-48 ERAD FL 

49-60 E m  FL 
61-72 AUERAD FL 

1 1-36 RCIN FL 

37-72 RDCIN FL 

1 1-2 K I 
per 3 - 14 STANM A 
Sta. 

15 -2 6 SLON FX 
27-29 SLONM FX 
30-35 SLONS FX 
36-47 SLAT FX 
48-50 SLATM FX 

Description 

1st harmonic coefficient of the 
earth's potential. 

2nd harmonic coefficient of the 
earth' s potential. 
3rd harmonic coefficient of the 
earth's potential 
Drag coefficient 
CDRAG increment 
Mass of vehicle 
Name of vehicle 

Minimum perigee distance 
A large number should be used 
to generate Gaussian noise on 
a clean data tape. Otherwise 
use zero. 
Inhibitor for  Kalman scheme 
Type of observation (see 7b) 
Greenwich hour angle of 1960, 
rad. 
Daily rate of earth's rotation, 
rad. /day 
Hourly rate of earth's rotation, 
rad. /hr. 
Equatorial radius of earth, km. 
Ellipticity of ear th  
Astronomical unit 
x, y, z (dimension determined 
by KLM) 
k, $, i (dimension determined 
by 
Station number 
Station name 
Longitude, deg. 
Longitude, min. 
Longitude, sec. 
Geodetic latitude, deg. 
Geodetic latitude, min. 
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--- Sect. Card Cols. Nam e 

51-56 SLATS Fx 
57-68 SALT Fx 

9 1-6 1-72 ErMAT FL 

10 1 12 per TIMEB FL 
value 

1-4 12 per TEBAR FL 
value 

11 0 

Description 

Geodetic latitude, sec. 
Geodetic altitude, ft. 
(6 x 6 matrix) initial estimate of 
the covariance matrix. Each 
card has one row of matrix. 
Array of times associated with 
various T2 matrices. Time 
is time from epoch in hrs .  
-2 matrix - 4 x 4 e r r o r  variance 
matrix, as many matrices as 
times; each card a row of matrix. 
Angles in seconds, range in 
meters, and range rate in cm/sec. 
The section card is used to end 
the input data for each run. 

c) Observation Data 

The observation data may be supplied either on cards or on tape. If the data is 
input on cards,  a tape is generated with the appropriate format which may be 

used for subsequent runs. The formats for the tape and cards are described 
below. It should be noted that the order of the observations can not be violated, 
i. e. , 

1) Azimuth 
2)  Elevation 

3) Range 
4) Range rate 
5) Right Ascension 
6) Declination 
7) open 
8) open 
9) open 

10) open 
’ The program is limited to ten types of observations. 
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Card Format 

Since the format of observation cards vary with the source, the format iteelf is 
input on the first card. This is written exactly as a FORTRAN format statement 
except that the statement number and the word "Format" are eliminated. The 
program only requires that the information be ordered as follows: 

1) 
2) 

3) 

Station number (as assigned iii %ctkn 8 ef %ho bpit)- 

Time in days, hrs.,  mins., and seconds of the year. 
Observations; blanks are used for missing observations, 

angles in degrees 
range in km. 
range rate in  km./sec. 

4) Type; see below. 

A blank card fOllOW8 the data. 

Tape Format 

A binary tape is supplied with the following information in each record. 

1) 

2) 
3) Type; see below. 
4) C!5servathne; blanks are &used - for missing observations. 

Time from epoch in hrs. ,  mins., and seconds. 
Station number (as assigned in Section 8 of the input). 

angles in radians 
range in E. R. 
range rate in E. R /hr. 

The observation type is specified by a sequence of ten values. Each value is 

associated with one of the ten types of observations in the reverse  order of that 
given above. 
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. 

A zero means the observation is used and a one that it is used. The type 
may also be input in Section 5 of the input data. Its use here  is to define the 
type to be generated when in the reference orbit mode. When in the predic- 
tion mode, a non-zero value is used to over-ride the type designation on the 
cards or  tape. 

d) Subroutine Description 

SUBR EXPLANATION 

ATANS Computes arctangent in degrees 
ATMSFR Prepares atmospheric density table 
CROSS 

C U R  Computes either 5s - Ec and F= - zc o r  

Computes cross product of two vectors . . .  
. .  

DECHA 
DEIN 
DEREG 
DERIV 
DERKI 
DOT 
DRAG 
FCOMP 

FIX 
INT 

KEPLER 
LAG 
MATINV 
MATMPY 
MDVECT 
OBLATE 
OBSER 

R = E c + F a n d  R = E c + F  

Sets up change in the integration interval 
Initializes the integration 
Normal integration routine 
Computes the derivatives 
Integrates by Mge-Kutta  method 
Computes dot product of two vectors 
Computes perturbations due to drag 
Computes fly fi, f3, f4 trig. functions 

Sets up logic for  data type 
Controls entries to integration routine 
Computes two-body coordinates 
Initializes positioning of the planetary tape 
Inverts a matrix 
Performs minimum variance matrix operations 
Computes IAI, ]AI2, lAI3 o f a v e c t o r  
Computes perturbations due to oblateness 
Computes observations, i. e. , range, range rate, 

azimuth, elevation, right ascension, and declination 
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SUBR 

OSCUL 

PART 

PRINT 
R A m  
RAPS 
RCTTST 

READ1 
RECORD 
RECT 
REDUCE 
RPERG 
SMATRX 
SUMARY 
VARORB 

'WORKMU 

EXPLANATION 

Computes the osculating elements 
Computes n ( t ,  to) 

Controls output 
Generates random noise on data 
Computes perturbations due to radiation pressure 
Tests for a rectification 
Generates positions of the planets 
Reads observation data 
Performs a rectification 
Reduces an angle to less than f l  

Computes magnitude of the perigee vector 
Computes S-matrix o r  its inverse 
Summarizes the results of the minimum variance 
Initializes variation orbits 
Prepares gravitational constants for the planets 
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8. RECOMMENDATIONS 

The Kalman filter, as modified in this study, shows promise for application as 

both a real time and post flight tracking and orbit prediction program of extreme 
accuracy and computing speed. In order to realize these potential advantages, 
it is recommended that additional work and development be carried out along the 
following lines: 

To determine in a systematic manner the effect on the final orbit informa- 
tion of 

1. Rate of observation 
2. Type of observation 
3. h s i t i o n  in the orbit 
4. Type of orbit. 

Replace the formulation of the present two-body problem to permit the 
computation of parabolic and rectilinear cases. In particular, investigate 
the possibility of incorporating Herrick's formulae, if these are available. 

Augment the program to include onboard observations of vehicle accelera- 
tion and star sightings as seen from the vehicle with respect to known geo- 
detic and lunar sites. 

I??p1cce the present integration scheme with one which estimates the ac- 
cumulated round-off and truncation e r r o r s  for incorporation into the more 
rational rectification program. 

Extend the modifications of the Kalman method to the case of a thrust 
vehicle. Obtain a new set of parameters and a state transition matrix 
for the thrusting case. 
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